W3099

Development and In Vivo Pharmacoscintigraphic Evaluation of a Novel Triple-Release Dexmethylphenidate Hydrochloride Tablet for Improved **Once Daily Dosing**

Steve Abele¹, Raul Silva¹, Matt Brams¹, Arthur Straughn¹, Laura Gow², David Smith², Howard Stevens², Fiona MacDougall² ¹Cingulate Therapeutics, 1901 Olathe Boulevard, Kansas City, KS 66103, US ²BDD Pharma, 84 Castle Street, Glasgow G4 0SF, UK

CONTACT INFORMATION: ¹ Cingulate Therapeutics, +1 862 260 9131, info@ctxusa.com ² BDD Pharma, +44 141 552 8791, fiona.macdougall@bddpharma.com

PURPOSE

To design a novel triple-release dexmethylphenidate hydrochloride (d-MPH) tablet for once daily ADHD therapy with extended therapeutic plasma levels utilizing OralogiK[™] technology, assess *in vivo* performance using pharmacoscintigraphy, and compare pharmacokinetics with commercially available Focalin XR.

METHOD(S)

A fasting, three-arm pharmacoscintigraphic study in healthy male volunteers compared the pharmacokinetics of the 12.5 mg CTx 1301 triple-release tablet and 10-mg Focalin XR capsules.

Subjects received a single dose of the appropriate treatment at approximately 9 AM on each treatment day. CTx-1301 tablets were validated with the following in vitro release profile:

- Treatment A: Commercially obtained 10-mg Focalin XR capsules (not radiolabelled)
- Treatments B & C: 12.5-mg CTx-1301 tablets radiolabelled (4 MBq technetium-99m) to visualise site and time of *in vivo* release (second or third release layers of the 12.5-mg CTx-1301 tablets)
- Subjects received one dose of each treatment under fasting conditions with dosing separated by a minimum of 7 days
- Sequential anterior and posterior abdominal images of 25 seconds duration were acquired using a Siemens eCam every 20 minutes until 14 hours post-dosing; pharmacokinetic blood sampling was carried out at defined intervals
- Plasma profiles were compared to time and site of radiolabel release for the 12.5-mg CTx-1301 tablets, and dose corrected pharmacokinetic parameters were compared across all formulations

RESULT(S)

Radiolabelled 12.5-mg CTx-1301 tablets demonstrated:

- Mean onset of radiolabel release for the second d-MPH release was at 4.7 ± 1.3 hours; excellent correlation with $Tmax_{(4-8)}$ (5.8 ± 1.2 hr) for the second d-MPH release for Treatment B₍₄₋₈₎
- Mean onset of radiolabel release for the third d-MPH release was at 10.3 ± 1.7 hours; correlates with the higher d-MPH plasma level AUC_(8 – 24) hours

Composite of Treatment B, Subject 001 12.5-mg CTx 1301 Figure 1 d-MPH drug plasma profile with identification of the time/point of radiolabel release from second release layer

Table 1 Comparison of mean d-MPH release

Parameter	Focalin XR (Treatment A) Mean (Range)	CTx-1301 (Treatment B) Mean (Range)	CTx-1301 (Treatment C) Mean (Range)
d-MPH Release 2 mean C _{max} (ng/mL) mean T _{max 4-8} (hr) AUC (4-8)	7.5 (5.0 – 11.4) 5.7 (4.0 – 7.0) 22.8 (14.6 – 33.9)	5.9 (2.2 – 13.0) 5.8 (3.9 – 8.0) 18.41 (4.6 – 35.9)	6.3 (2.2 – 11.7) 6.3 (5.0 – 8.0) 19.75 (7.4 – 33.0)
d-MPH Release 3 mean C_{max} (ng/mL) mean T_{max} (hr)	NA ¹	2.8 (1.8 – 3.9) 13.4 (10.0 – 16.0)	3.5 (1.7 – 5.7) 12.2 (10.0 – 16.0)
Mean AUC ₈₋₂₄ (ng-hr/ml) ²	17.1 (10.4 – 34.4)	29.2 (19.1 – 41.3)	31.6 (20.5 – 49.3)
Mean AUC _{INF} (ng-hr/mL)	71.25 (52.9 – 117.0) ³	63.86 (42.4 – 101.6)	67.74 (43.6 – 97.2)

¹Focalin XR does not Have a Third Release: Focalin data represents the Mean AUC₈₋₂₄ for Focalin for comparison purposes. ² Determined by deducting AUC₍₀₋₈₎ from AUC_(0-last). ³ Values for Focalin XR normalized to 12.5 mg

- to 10-mg Focalin XR
- The C_{max} for 12.5-mg CTx-1301 second d-MPH release in Treatments B and C were approximately 20% expected result of the CTx-1301 extended second release profile
- 95% of 10-mg Focalin XR
- Mean exposure from 8 24 hours as determined by AUC₍₈₋₂₄₎ values for the 12.5-mg CTx-1301 tablets

Composite of Treatment C, Subject 001 12.5-mg CTx 1301 Figure 2 d-MPH drug plasma profile with identification of the time/point of radiolabel release from third release layer

se	РК	parameters
	1 1	parameters

C_{max} data from the IR release (first release) for all three Treatments of the study were comparable at 5.9, 4.9 and 5.3 ng/mL; confirming the initial 12.5-mg CTx-1301 IR layer released d-MPH in a similar manner

lower at 5.9 and 6.3 ng/mL respectively when compared to the 10-mg Focalin XR C_{max} of 7.5 ng/mL, an

The overall extent of absorption of the 12.5-mg CTx-1301 formulations (Treatments B & C) were 89% and

were significantly higher at 29.2 and 31.6 ng-hr/mL (1.7 – 1.85 greater) than the 10-mg Focalin XR (17.1 ng-hr/mL), confirming the 12.5-mg CTx-1301 tablet design gave higher drug levels for an extended period

Figure 3 shows the d-MPH plasma profiles for Focalin XR (Treatment A), CTx-1301 tablets (Treatments B & C). Figure 4 shows scintigraphic images of the CTx-1301 tablet in vivo.

Figure 3 d-MPH plasma profiles for Focalin XR (Treatment A) and CTx-1301 tablets (Treatments B and C)

Figure 4 Example of scintigraphic data for 12.5-mg CTx-1301 2nd and 3rd release points (Treatments B and C)

CONCLUSION(S)

• *The* d-MPH *in vitro* dissolution data correlated well with the *in vivo* release data of radiolabelled CTx-1301 tablets and with pharmacokinetic profiles

The overall extent of absorption of the 12.5-mg CTx-1301 formulations were 89% and 95% (Treatments B & C) of 10-mg Focalin XR

• The mean IR Layer Release Profile for the 12.5-mg CTx-1301 was similar to the IR Release Profile for the portion of the 10-mg Focalin XR

• The 2nd 12.5-mg CTx 1301 d-MPH release correlated with the CTx predicted delay time and was similar to the 2nd d-MPH 10-mg Focalin XR release

• The 3rd 12.5-mg CTx 1301 d-MPH release extended the plasma levels 4 – 6 hours compared to 10-mg Focalin XR, confirming that the CTx-1301 tablet design strategy offers a potentially new treatment option for ADHD patients

